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Abstract

[663] There is a plurality of formal constraints for aggregating probabilities
of a group of individuals. Different constraints characterise different fam-
ilies of aggregation rules. In this paper, we focus on the families of linear
and geometric opinion pooling rules which consist in linear respectively
geometric weighted averaging of the individuals” probabilities. For these
families, it is debated which weights exactly are to be chosen. By applying
the results of the theory of meta-induction we want to provide a general
rationale, namely optimality, for choosing the weights in a success-based
way by scoring rules. A major argument put forward against weighting
by scoring is that these weights heavily depend on the chosen scoring
rule. However, as we will show, the main condition for the optimality of
meta-inductive weights is so general that it holds under most standard
scoring rules, more precisely under all scoring rules that are based on a
convex loss function. Therefore, whereas the exact choice of a scoring
rule for weighted probability aggregation might depend on the respective
purpose of such an aggregation, the epistemic rationale behind such a
choice is generally valid.

Keywords: probability aggregation, meta-induction, scoring rules,
optimality, linear weighting, geometric weighting

1 Introduction

Probability aggregation is the theory of how to adequately aggregate a set of
probability distributions into a single probability distribution. For more than
two decades now disciplines concerned with probabilistic reasoning and its ra-
tionale are undergoing [664] a social turn, at least so it seems. This makes the
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problem of probability aggregation a highly relevant topic. Therefore, e.g., in
philosophy of science recent research focusses a lot on the relation of scientific
groups having gathered a different set of evidence, holding different theories,
and providing alternative explanations (cf. Douven and Riegler 2010; Hart-
mann, Martini, and Sprenger 2009; Zollman 2007). Similarly, in epistemology
core topics of social epistemology—namely the problems of how to incorpo-
rate testimony, to resolve peer disagreement, to aggregate judgements—are
very often framed in a probabilistic setting (cf., e.g., for testimony Goldman
1999; for peer disagreement Elga 2007; and for probabilistic judgement aggre-
gation Dietrich and List 2016). It is clear that also there, the question of how to
adequately aggregate probabilities pops up.

Probability aggregation is highly relevant for different domains. One of the
reasons for this is that it has a multitude of interpretations. Wagner (2009-11,
pp-336f) lists five usual roles of such an aggregation. It might serve as

1. arough summary of a set of individual probability distributions; or
2. a compromise adopted by individuals; or

3. a consensus to which all individuals have revised their initial probability
distributions; or

4. the probability distribution of a decision maker that is external to the group; or

5. arevision of a particular individual probability distribution after the indi-
vidual has learned about other “reasonable” probability distributions.

This list is, of course, not comprehensive and there are also further possibilities
of dealing with other and more fine-grained group setups (cf., e.g., Dietrich
2019). Our suggestion for meta-inductive probability aggregation applies to
all five domains of application; it is particularly intended for case 4, i.e. for
generating a probability distribution of a decision maker that is in some sense
external to a group; it might be that the decision maker is strictly external in
the sense that she has the authority to make a decision and just has to think
about how to best incorporate a group’s possibly diverse set of probability dis-
tributions (a case in point would be a policy-making agency that has to work
on the bases of a diverse set of expert opinions). However, the decision maker
might be also external in the weaker sense of simply having the advantage of
receiving information from the group beforehand, while still competing with
it (a case in point might be, e.g., weather forecasting competitions or any other
forecasting competition with different time ranges for the announcement of the
individual forecasts).

In a similar line as it is argued in social choice theory, also in the theory of
probability aggregation general rationality constraints for probability aggrega-
tion methods are put forward; the aim then is to figure out which aggregation
methods satisfy these constraints. Often the constraints put forward are not
compatible with each other. This led to the famous impossibility results of so-
cial choice theory (cf. Arrow 1963) and the theory of judgement aggregation



(cf. List and Pettit 2002). However, as it turned out, one can cluster these con-
straints in such a way that relevant subclasses are jointly satisfiable and char-
acterise different families of aggregation methods. As we will see in the next
section, broadly accepted constraints lead in particular to two common aggre-
gation rules, namely linear weighting and geometric weighting. [665] Therefore,
if one can figure out which constraints for probability aggregation are relevant
for which domain of application, one seems to be able to give a partial solution
to the problem of probability aggregation. However, even if one subscribes
to such a purpose-dependent strategy (cf., e.g., List and Pettit 2011), the con-
straints put forward at most determine a family of aggregation methods, but
no exact aggregation method. In particular, the choice of the weights—which
is from the viewpoint of practical applications the most important factor—is
undetermined by these constraints.

In this paper, we are going to argue for a new approach to determine such
weights. We will do so by suggesting that—if available information permits
it—to take in a dynamic perspective and employ optimality results of the so-
called theory of meta-induction that show that a success-based determination of
weights allows for proving long run optimality of probabilistic predictions.
On the one hand, this results in a more specific determination of the weights
used for aggregating probabilities, and, on the other hand, it also provides an
epistemic rationale for doing so.

The structure of the paper is as follows: In section 2, we summarise the
characterisation results of the theory of probability aggregation which lead
to two families of aggregation functions, namely the linear and the geometric
weighting rules. Since the exact weights are not determined by these results,
we briefly discuss solutions for determining weights and their problems in sec-
tion 3. There we also outline our solution. The framework of prediction games,
and the main results of the theory of meta-induction are presented in section
4. This prepares the ground for section 5, where we apply this framework to a
probabilistic setting: We show how the meta-inductive optimality results can
be transformed to the probabilistic case and provide a general epistemic ratio-
nale. We conclude in section 6.

2 Underdetermined Probability Aggregation

Many investigations of probability aggregation were triggered by Leonard J.
Savage’s seminal work on the Foundations of Statistics, where he introduced a
model of group decision:

“Consider a group of people [...] supposed to have the same utility
function, [...], but their personal probabilities are not necessarily
the same. The group of people is placed in a situation in which it
must choose an act [...] from a finite set of available acts [...]. The
situation just described will be called a group decision problem.” (cf.
Savage 1972, chpt.10.2)



A paradigmatic example mentioned by Savage is the decision-making by a
legal jury. As it has to come to a conclusion as a jury, it needs to end up with a
group opinion. The scheme of the problem is as follows (Russell, Hawthorne,
and Buchak 2015-05, call this constraint ‘functionality’, cf. p.1290):

Pryy, oy = f(Pr1,..., Pry).

Here Pry, ..., Pr, are the probabilities of the members of a group, also called
graded opinions, credences or graded predictions, f is an aggregation function,
and Pry 1 [666] is the respective group probability (graded group opinion,
group credence or graded group prediction). In what follows, we assume that
all the Pr; as well as Pry; 1 are probability functions over an algebra A of
propositions, defined as the powerset of a finite set S = {sq,...,5} of possi-
ble worlds or states s; (we use ‘s;” and ‘S’ here for possible worlds/states and
a set encompassing them, because later on we will use ‘w;” for the weights);
thus, propositions (p) are subsets of S, and conjunctions and disjunctions of
them are understood as set-theoretic intersection and union, respectively. We
assume the cardinality of S is at least 3 (this assumption is needed for the char-
acterisation of linear pooling). In later sections (beginning with section 4), we
will assume that the possible world propositions {s;} are expressed by finite
conjunctions of statements of the form X (i) = v, where X is a random vari-
able over a domain of discrete time points (i € N, where N is the set of natural
numbers), and v € ¥ is a value in the value space ¥ of the random variable X.

As we have seen, according to Savage the group decision problem consists of
the question of how to constrain the transmission from the individual to the
group. A plurality of constraints for approaching the problem has been dis-
cussed. Such investigations are often performed in the line of the so-called ax-
iomatic method, where one formulates general constraints for a good aggregation
function in the form of axioms, and then asks which aggregation functions sat-
isfy these if any at all (cf. Dietrich and List 2016, sect.3). A vast amount of litera-
ture evolved in this area (cf. Genest and Zidek 1986-02) and many impossibility
results of constraints for aggregation have been proven in the past. Seminal is,
e.g., (Arrow 1963), where it is shown that some very basic constraints cannot be
simultaneously satisfied in the comparative realm. List and Pettit (2002) prove
a similar result for the qualitative realm of opinions, namely belief and disbe-
lief. However, many of the problems of the qualitative and comparative realm
disappear in the quantitative realm. What is more, three axioms that lead to an
impossibility result within the qualitative realm even characterise a plausible
family of transformations or aggregation rules of the quantitative realm. As
is discussed and shown in (Lehrer and Wagner 1981, chpt.6; and Genest and
Zidek 1986-02, sect.3), the mentioned three conditions characterise the family
of linear opinion aggregation rules:

(U) Universal domain: The domain of the aggregation function f is the class of
all (uncountably many) profiles of n probability measures, (Pry, ..., Pry),
i.e., this domainis {Pr: A — [0,1]}".



(CP) Certainty Preservation: For all propositions p € A, if everyone assigns a
probability of 1 to it, so does the group, i.e.: If Vi € {1,...,n}Pri(p) =1,
then Pr{l,”.’n}(p) =1.

(I) Propositionwise Independece: The collective probability of any proposition
depends solely on the individual probabilities of this proposition, or for-
mally, for all propositions p € A there exists a propositionwise aggrega-
tion function £, : [0,1]" — [0, 1] such that for all profiles (Pry,..., Pry) in
the domain, Pryy, 3 (p) = fp(Pri(p),.-., Pra(p)).

[667] Linear opinion aggregation rules have the form of a weighted arithmetic
mean:

Pr{l,...,n} = Z w; - Pl’i
1<i<n (AM)

(where w; > 0and wq + - - - + w, = 1).

It is interesting to note that comparative “versions” of the three constraints
above lead to the famous impossibility results of social choice theory (cf. Arrow
1963). In the quantitative/probabilistic setup, however, these constraints turn
out to determine an important family of functions, namely linear opinion ag-
gregation rules. Since many theorists consider (U), (CP), and (I) to be plausible
constraints for probability aggregation, this family has been also proposed as a
general framework for probability aggregation (cf. Lehrer and Wagner 1981).

Unfortunately, this characterisation has also some problems. One impor-
tant drawback is that (U), (CP), and (I) are jointly incompatible with other fur-
ther plausible constraints for aggregating probabilities. Well-known is, e.g.,
their incompatibility with the axiom of independence preservation (cf. Lehrer and
Wagner 1983): This axiom demands that if all members of a group consider two
propositions to be probabilistically independent: Pr;(p1|p2) = Pri(p1) (Vi €
{1,...,n}), then also the aggregation should be this way: Pryy .\ (p1|p2) =
Pry,  ny(p1). Connected with this is the problem that the constraint of aggre-
gating Bayesian (cf. Genest and Zidek 1986-02, p.119) is not compatible with
these conditions: Aggregating individual credences and then performing a
Bayesian update by new evidence might be different from all individuals’ first
performing a Bayesian update of their credences and then aggregating the up-
dated credences (cf. Mongin 2001, p.320). In other words, linear probability
aggregation does not satisfy the condition of the commutativity of aggregation
and updating by Bayesian conditionalisation. The commutative update rule
that holds for linear weighting is called “imaging” and differs in important re-
spects from Bayesian updating (cf. Leitgeb 2016; the discussion of Leitgeb is
based on the main result of Gardenfors 1982).

However, there is another family of aggregation functions that allows one
to satisfy the commutativity constraint while still upholding Bayesian ortho-
doxy: Genest (1984-09, p.1101) and Genest, McConway, and Schervish (1986-
06, p.499) show that weak unanimity preservation (cf. Russell, Hawthorne,



and Buchak 2015-05, p.1295, fn.8) and commutativity of aggregation and con-
ditionalisation together with some further technical assumptions characterise
the family of the logarithmic or geometric graded opinion aggregation rules.
For lack of space, we will not discuss the technical assumptions here. The
constraints of weak unanimity preservation and commutativity of aggregation
and conditionalisation can be characterised as follows:

(P) Weak Unanimity Preservation: For all profiles (Pry, ..., Pry) in the domain:
If Pry=---=Pry, thenPryy ,, =Pry=---=Pry.

Our formulation of the following condition (CAC) on the commutativity of
aggregation with learning is based on (Dietrich 2019). We say that a probability
function Pr* arises from Pr by conditionalisation on a piece of evidence e iff

Pr(e) > Oand forall p € A, Pr*(p) = Pr(ple) := P;(fg)e): [668]

(CAC) Commutativity of Agregation and Conditionalisation: For all propositions
p € A and profiles (Pry,...,Pry) and (Prj,...,Pr;) in the domain,
with corresponding aggregate functions Pr{1,.,.,n} and Pr’{‘lwn}, if each
Pr; arises from Pr; by conditionalisation on ¢, then Pryy ) arises from
Pri{Fl,...,n} by conditionalisation on e.

These two constraints characterise the normalised weighted geometric mean

as defined below. Although initially the concern was voiced that the addi-

tional technical assumptions needed for proving a characterisation result of
geometric pooling are in need of further justification, so that we “lack a fully
compelling axiomatic characterisation of geometric pooling” (cf. Dietrich and

List 2016, sect.6), new developments in this field resulted in further celebrated

characterisation results for geometric averaging (cf. Russell, Hawthorne, and

Buchak 2015-05) and could be even specified to different forms of geometric

averaging as being characteristic for different forms of Bayesian learning situ-

ations (cf. Dietrich 2019).

The definition of the normalised weighted geometric mean of a family
of probability functions is restricted to coherent profiles, where a profile
(Pry, ..., Pry) is called coherent iff there exists at least one world s € S to
which each Pr; assigns a non-zero probability (cf. Dietrich 2019). Here is the
definition: For all s € S and all profiles (Pry, ..., Pry) that are coherent:

[T Pri(s)“

1<i<n

T II Pr(s)™ (GM)

seS1<i<n
(where w; > 0and wy + -+ - +w,, = 1)

Preg,  ny(s)

This family of aggregation rules is technically quite demanding. By the
coherence requirement, the denominator in the equation must be nonzero
and guarantees normalisation: Pryy 1 (s1U- Usw) = Pryy n(s1) + -+



Pryy, ny(sm) = 1 (where m is the cardinality of S). Since the set of worlds
is supposed to be finite, the equation above determines Pr; . for arbitrary
propositions, i.e., disjunctions of possible worlds, via Pr(s Us’) := Pr(s) +
Pr(s’) (with's,s’ € S). In section 5.2 we will require a constraint for predictive
propositions that is stronger than coherence, namely e-regularity. More details
of the family of geometric aggregation rules are discussed, e.g., in (Dietrich and
List 2016, sect.6).

Regardless of the exact characterisation of arithmetic and geometric ag-
gregation rules and the assessments of their advantages and disadvantages,
these two families are amongst the most common pooling methods. And, al-
though there is no general aggregation method that allows one to satisfy the
constraints for aggregating probabilities as put forward here simultaneously,
these two families allow one to satisfy reasonable subsets of these constraints.
If one follows the line of reasoning of List and Pettit (2011) and makes the
choice of the exact aggregation rule dependent on the context and purposes in
question, then (AM) and (GM) may seem to be good candidates for solving the
group decision problem (we think that particularly Dietrich 2019, is an excel-
lent example in this vein of a context-dependent choice of aggregation). [669]
Hence, it should one make not wonder too much that these two families are
also the two most prominent types of probability aggregation rules studied in
the literature.

However, there is a problem underlying both (AM) and (GM): It is true that
the characterisation results make clear which axioms determine the choice of
which family of aggregation rules. Nevertheless, each family still allows for a
wide range of different aggregations. And as one can easily see when looking
at the equations, this variance is due to the underdetermination of the weights
by the aggregation constraints. So, in order to provide an adequate answer to
the group decision problem, one also has to address the problem of choosing
the right weights.

3 The Problem of Choosing the Weights

As we have indicated above, the constraints (U), (CP), and (I) determine the
family of linear aggregation rules, (P), and (CAC) (and some technical assump-
tions not described here further) determine the family of geometric aggregation
rules, but no set of the constraints allows one to determine a specific aggrega-
tion rule. Regarding the weights used for aggregation, these constraints remain
undetermined. Now, it is sometimes suggested in the literature that there is no
general objective account of justifying a specific choice of the weights: “The de-
termination of the weights is a subjective matter, and numerous interpretations
can be given to the weights” (Clemen and Winkler 2007, p.157). Also, Genest
(1984-09, p.1104) mentions this problem when stating his characterisation re-
sult of (GM): “The problem of choosing the weights w; [...] remains and is not
addressed here. This difficulty is common to most axiomatic approaches”.
Genest and McConway (1990) provide an overview of approaches to deter-



mine weights and briefly discuss their problems. We are going to mention just
the most prominent approaches here.

According to the interpretation of veridical probabilities (cf. Bunn 1981-03,
p-213), weights are considered to represent the probability of an individual
probabilistic forecast to be right: “w; represents the probability that Pr; is
the ‘true’ distribution” (cf. Genest and McConway 1990, p.56, notation ad-
justed) and “w; would represent the probability of predictor i being the “true’
descriptive model of the underlying stochastic process” (cf. Bunn 1981-03,
p-213, notation adjusted). So, according to this approach the weights w; rep-
resent the “decision maker’s” credence in Pr; making an accurate prediction:
Pryy, ny(Pri = ch), where ch is the true chance distribution (cf. Bunn 1981-
03, p.213). However, this approach faces the main problem that it is not clear
how one can determine the relative veracity of competing opinions when one
is ignorant about the true distribution in the world. Moreover, at any stage
of evidence this account faces the problem of induction, i.e. of estimating the
distribution over unobserved individuals from the observed individuals; and
different priors give entirely different answers to this problem. Another objec-
tion against this account of weighting individuals by the probability that they
have the ’true’ probability distribution is that we have to buy in a claim about
the certainty that one of the individuals holds the ‘true’ probability distribution
because the weights sum up to one. In conclusion, the account fails to tell us
what should be considered as adequate priors of Pry; _,, in estimating [670]
that Pr; is an accurate distribution. For this reason, so it seems, this approach
fails to set foot on solid ground.

In a further approach, the weights are interpreted as outranking probabili-
ties: “w; should be interpreted as the probability that the next prediction made
using opinion Pr; will outperform predictions made from all other individ-
ual opinions in the group” (cf. Genest and McConway 1990, p.57, notation
adjusted). An advantage of this interpretation is that such weights are oper-
ationally easier to grasp. “However, the main problem with this approach is
that if the experts know in advance how their weights will be derived, they
may experience them as scores and choose to report dishonest opinions in or-
der to maximise their influence on the opinion pool”. This was the reason for
introducing another interpretation of the weights, namely weights being inter-
preted as scores: In order to avoid the problem of manipulation, proper scoring
rules for weights were put forward, i.e. scoring rules which guarantee “that
the distribution reported by each expert maximises his expected utility if he is
honest and coherent”. However, also here a problem seems to show up: There
is a plurality of proper scoring rules (quadratic, logarithmic, spherical etc.) and
empirical investigations suggest that “weights [resulting from scores] are not
quite satisfactory because they seemed sensitive to the choice of scoring rule”
(cf. Genest and McConway 1990, pp.56ff).

This is the point where we think that meta-induction should enter the pic-
ture because it allows for determining weights generally in a success-based
way. Then optimality results of meta-induction can be cashed out for providing
a general rationale for such a determination. The main line of our argumenta-



tion is that at least for linear pooling the epistemological rationale provided by
the optimality result of meta-induction is general enough to capture all relevant
scoring rules. So, in order to accommodate this rationale, no specific choice of
a scoring rule is necessary. Rather, many of them can be justified generally and
the exact choice of a scoring rule might be plausibly made dependent also on
the context and purpose in question.

In the next section, we describe the optimality results for meta-inductive
success-based weighting for the prediction of single events. Afterwards, in
section 5, we are going to generalise the approach to the probabilistic setting.

4 Meta-Induction and Determining Weights

The theory of meta-induction generalises Hans Reichenbach’s best alternatives
approach (cf. Reichenbach 1938, pp.348ff; and Schurz 2008, sect.2). Reichen-
bach proposed to consider the problem of induction not with respect to the
strong requirement of proving that inductive methods are successful, but with
respect to the much weaker, but epistemically still highly relevant, requirement
of proving that inductive methods are the best methods accessible for making
predictions. His solution to the problem of induction is a very simple, but also
narrow one: If the world is predictable in the sense that for any distribution un-
der investigation there is a limiting frequency, then a method that is defined as
approaching this frequency in the limit (as, e.g., is guaranteed by the straight
rule (cf. Howson 2003, p.72)), will “lead to the limit”. It is clear that the whole
argument is analytic. The specific interpretation of ‘a series is predictable” as
‘there exists a limit of the series’ some way or another smuggles the [671] induc-
tive uniformity of the series into the meaning of the “prediction of a series of
events’.

However, one can try to weaken the assumption made by Reichenbach and
prove that following an inductive method is still a necessary condition for pre-
dictive success, in the sense that all other accessible methods that are most
successful converge with that inductive method. Exactly this is done within
the approach of meta-induction (cf. Schurz 2008, 2019). Here the prediction
problem is understood as the problem of providing a successful prediction of
the outcome ¢;,1 of the next event based on information about the outcomes
e1,€,...,e of the preceding events, with t = 0,1,... as a discrete time vari-
able. (Speaking of ‘outcomes of events’ means that we understand the events
e; as being generated by an event variable; see below.) Similar to Reichenbach’s
proposal, induction is not justified in the account of Schurz (2008) in the sense
of a ‘correct or true prediction’, but as ‘being optimal among all accessible al-
ternatives’. Contrary to Reichenbach’s proposal, there are no constraints what-
soever on the series of events ey, ey, ...; there might be a limiting frequency
of the distribution of properties within such a series or not—it might be pre-
dictable in the sense of Reichenbach or completely chaotic. Also different from
Reichenbach’s framing of the problem, within the approach of meta-induction
it is argued for the predictive optimality of induction on a meta-level instead



of an object-level: Whereas inductive rules at the object-level are applied to the
series of events ey, ..., e; in order to predict the event e; 1, the meta-inductive
method is applied to the series of predictions made by all available alterna-
tive methods and turns these predictions into a prediction of its own—this is
the reason why it is called a ‘meta-method’. The underlying idea of the meta-
inductive method is to select among predictions all those whose predicting
methods were most successful in past—and to aggregate these predictions in
an optimal way. It can be proven that there exists a meta-inductive selection-
and-aggregation procedure which is most successful in the long run, i.e. its
predictive success converges to that of the best prediction method, even if the
best method permanently changes in an unforeseeable way, for example, be-
cause of unforeseeable changes of the environment. In this way one can say
that the meta-inductive method infers from past success future success; it is
successful induction over success rates.

Here are the details: The framework of meta-induction is formed by so-
called prediction games. Graded (or real-valued) prediction games have the fol-
lowing ingredients (cf. Schurz 2008, 2019, sec. 5.5, notation adjusted):

® ¢1,67,... is an infinite series of events at discrete times or ‘rounds’ t =
1,2,.... The events are the actual outcomes of an event variable or ran-
dom experiment E, taking for each time ¢ a value in a fixed value space
Val. More formally: E : N — Val and E(t) := e;. For graded (or real-
valued) prediction games, Val is an interval of real numbers; to keep the
number of possible world propositions finite (for any given time t) we
assume that the real numbers representing events are of finite accuracy.

® prit, ..., pras are the predictions of the event value E(t), delivered by
the n accessible prediction methods {Mj,... M}, the so-called candi-
date methods, which are typically but not necessarily object-level meth-
ods. Thus the prediction pr;; stands more explicitly for the proposition
“E(t) = pri;” predicted by [672] method M;. The predictions pr;; have
to be elements of the real-valued interval [0,1]. It is allowed to predict
mixtures or weighted averages of event values; so the space of prediction
values may be a superset of Val.

® pryi;is the prediction of e; of the meta-inductive method M,,;.

As we have said above, a meta-inductive method “cooks up” a prediction from
the present predictions and past success rates of the candidate methods. The
success rate of a method M; at any given time t is determined as follows: First,
one measures the loss of its predictions compared to the actual or ‘true” event
e; for each time t—this loss is denoted as I(pr;, e¢). Next, one defines the score
of a prediction as 1 minus its loss, and finally, one defines the success rate s;;
of M; at time ¢ as the sums all of its scores up to time ¢ divided by ¢ (cf. Schurz
2019, sect.6.6):
X 1—=I(priueu)

! t

10



The measure s;; represents the success rate, or average per-round success, of
candidate method i up round t. The only assumption we make about the loss
measure [ is that it lies within the interval [0, 1], and that it is convex in its first
argument, i.e. the loss of a weighted average of two predictions is lower than
or equal to the weighted average of the losses of these two predictions. Or
formally: l(w-x+ (1 —w) -y,z) <w-I(x,z) + (1 —w) - I(y,z) holds for all x,y
and w € [0,1]. Important examples of convex loss functions are (i) the natural
loss that identifies the loss with the absolute distance, I(pr; ,, ex) = |priy — eul,
and (ii) the quadratic loss, I(pr;,,es) = (pri, — es)?, which is important for
probabilistic prediction games (see below).

The same success measure (s,,;;) applies to the predictions pr;; of the
meta-inductive method. Now, based on this success measure one can define a
so-called attractivity measure. The idea of this measure is that the higher the past
success of an attractive method, the higher is also its attractivity. Moreover,
the attractivity measure cuts off those object-level methods that are not attrac-
tive, i.e., that have a lower average per-round success rate than the meta-level
method has. Thus the weight of an object-level method M; for the meta-level
method M,,; regarding event e; is defined as follows (as usual the denominator
is needed for the purpose of normalisation):

max(0,s;; — Smit)

Wit =
L max(0,5i4 — smip)
1<j<n

provided t > 0 and the denumerator is non-zero; otherwise we stipulate w; ; =
1/n. Note that the denumerator becomes zero if M,,,; outperforms all candidate
methods, in which case s,,;; > s;; holds foralli € {1,...,n}.

Based on these weights, we can define a meta-inductive method which
weights the predictions of the attractive methods according to their attractivi-
ties. Such a method generates predictions by the method of linear (arithmetic)
aggregation as follows (cf. Schurz 2008, sect.7) [673]:

Pruips1 = Y, Wig- Prips1 (AMI)

1<i<n

According to (AMI) M,,; with its predictions pr,,; ; is a meta-inductive method
inasmuch as it bases its prediction on the predictions and weights of all acces-
sible candidate methods, and it is a meta-inductive method inasmuch it is con-
structed out of candidate methods whose weight increases monotonically with
their observed success rates. Note the recursive character of this definition: the
meta-inductive prediction pr,,; ;11 depends on the weights w; ; at earlier times
which depend on the meta-inductive predictions at earlier times.

From the viewpoint of the meta-inductivist, attractivities are also called re-
grets; prediction methods based on regret-based weighting have been devel-
oped in a field of machine learning known as “online learning under expert
advice” (Cesa-Bianchi and Lugosi 2006, chpt.1). A refined version of regret-
based predictions uses weights based on an exponential success dependence;
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the definition of these weights ew is more complicated (cf. Cesa-Bianchi and
Lugosi 2006, pp.14f; and Schurz 2019, p.144£.):

e\/W'(Si,t_smi,t)
y e\/W'(Sj,f_smi,t)

1<j<n

ewi,t =

The exponential success-dependent meta-inductive predictor is defined
similarly to the linear success-dependent meta-inductivist (AMI) by the
method of weighted arithmetic average; thus:

Plemip+1 = Y €Wit- Prips1 (EAMI)

1<i<n

Both methods (AMI) and (EAMI) prove to be very powerful regarding the task
of justifying induction in a sense similar to that proposed by Reichenbach:
There are quite narrow bounds of Pr,,; and Pr,,,;’s relative worst-case regret,
i.e., the loss of their success rates compared to the success rate of the actually
best candidate method. Based on theorems in the machine learning literature
(cf. Cesa-Bianchi and Lugosi 2006, sect.2.1f; and Schurz 2019, sect.6.6) the fol-
lowing lower bounds of the regret hold:

For (AMI), sjt —syiy < Vn/t  (Vie{l,...,n}). (AMI Bounds)

For (EAMI), s; ¢ — Semit < 1/3.125-In(n)/t (Vi€ {1,...,n}).

(EAMI Bounds)
As defined here, if n > 6 the exponential success-dependent meta-level
method (EAMI) has a better guaranteed lower bound. It should be noted also
that (EAMI) [674] is the best known long run access optimal meta-inductive
method inasmuch as it approximates best the minimal lower bound that is
achievable in principle, namely /In(n) /2t (cf. Cesa-Bianchi and Lugosi 2006,
p.62, thrm.3.7). On the other hand, (AMI) converges faster than (EAMI) to the
maximal success rate of a game with a sustainably best method (cf. Schurz and
Thorn 2022). However, what is most important in our context is that the rela-
tive regret of the two meta-inductive methods converges quickly to zero when
t grows large. An important consequence of this fact is the following result
about the so-called long run acccess-optimality of meta-induction:

* Given [ is convex (where [ is used for determining s), then both meta-
inductive prediction methods (AMI) and (EAMI) are optimal in the long

run:
tlim max(sit, ..., Snt) — Smip < 0 (AMI Optimality)
— 00
tlim max(sit, ..., Snt) — Semit < O (EAMI Optimality)
—>00

Therefore, the meta-inductivist’s success rate and that of the best performing
methods converge in the limit or the meta-inductivist even performs better. In
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the machine learning literature, such prediction methods are known as online
learnable or no-regret algorithms (cf. Shalev-Shwartz and Ben-David 2014). This
result expresses exactly what Reichenbach has described as a necessary con-
dition for predictive success, though at the level of meta-induction. What is
more, this result does not depend on any constraints of the event series under
investigation and holds for all convex loss functions (underlying the success
rates s).

It should be noted that the convexity of the loss function is an important in-
gredient of the meta-inductive optimality result explained in this section. We
find the assumption also to be key in the general literature on the wisdom of the
crowd (cf. Lyon forthcoming). At this venue, we cannot discuss in detail why
we think that this assumption is justified. However, we want to hint at least
at two points. First, for probabilistic predictions one standardly uses so-called
proper scoring functions (for reasons to be explained in the next section), and
the loss functions underlying them are always convex. Second, it is possible to
transfer the meta-inductive optimality results to prediction games with arbi-
trary (possibly discrete, i.e. non-graded) events and arbitrary (possibly non-
convex) loss functions, namely by randomizing predictions and expressing op-
timality in terms of expected or average success; for details see (Schurz 2019,
sec. 6.7).

In the next section, we are going to utilise the meta-inductive optimality
result in order to determine the weights of linear and geometric probability
aggregation and provide an epistemic rationale for such a determination.

5 Success-Based Probability Aggregation

We now turn to probabilistic prediction games, which are an important subcase
of prediction games in general. In these games, each forecaster or candidate
method [675] identifies the predicted real value with her credence of the pre-
dicted event conditional on her information about the past. First, let us ask:
When is it reasonable to equate one’s real-valued prediction with one’s proba-
bility of the predicted event? According to a well-known result, this identifica-
tion is not optimal if the loss function is natural or linear, even if one’s proba-
bility is close to the true statistical probability. Rather, under this assumption,
the optimal prediction rule is the so-called maximum rule which predicts that
event value v whose conjectured probability (i.e., so-far observed frequency
freq;) is maximal (cf. Rumelhart and Greeno 1971; Reichenbach 1938, pp.310f).
For binary events, the maximum rule predicts 1 as long as f reqt(l) > 5and 0
otherwise.

The fact that with linear loss functions it is not optimal to predict the proba-
bilities of discrete events does not at all imply that good estimations of the ob-
jective probabilities are unimportant for predictive purposes and all that one
needs to know is which element of the value space has the maximal chance.
One can see this, e.g., by the fact that the agreement of epistemic with objec-
tive probabilities is essential for objective Bayesian decision makers: they need
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to know the objective probabilities in order to choose an action with maximal
average payoff. Moreover, knowledge of objective probabilities is necessary
when one asks whether what is predicted by an optimal method should be
believed as being true.

In many contexts one wants the predictor’s forecasts to reveal her epistemic
probabilities. An example of such a context is weather forecasting. For this pur-
pose, non-linear scoring rules have been devised having the property that the
expected success of real-valued predictions in independent and identically dis-
tributed sequences (IID) is maximal exactly if the forecaster predicts her epis-
temic probability of the predicted event. These scoring rules are called proper.
The loss function underlying a proper scoring rule for a binary event E with
outcomes e € {0,1} has the following property—where we abbreviate the pre-
diction that the event e occurs with probability » simply as r:

(PS) Proper Scoring: A scoring rule for a binary event e € {0, 1}is proper iff it is
based on a loss function / satisfying the following constraint:
The expected loss of the prediction » under probability Pr—defined as
Pr(e=1)-1(r,1) + Pr(e = 0) - I(r,0)—is minimal iff r = Pr(e = 1).

Thus, if the accepted probability function of a rational forecaster is Pr and
she is scored by a proper scoring rule. then she will predict her epistemic prob-
abilities because this maximises her expected success. Moreover, she will try to
approximate the true statistical probabilities with her epistemic probabilities,
because only this can guarantee that her expected success approximates the
true average success.

While a linear loss function does not satisfy requirement (PS), certain non-
linear but convex loss functions satisfy it. According to a famous result of
Brier (1950), the quadratic loss function, I(r,e) = (r — e)z, constitutes a proper
scoring rule. This is seen by differentiating Expp, with respect to Pr(e = 1)
and setting it to zero: Let p abbreviate Pr(e = 1). Then: d[p - (r —1)> + (1 —
p)r?)/dr = d[p — 2pr +r*]/dr = —2p +2r! = 0;hence p = Pr(e = 1) =r.

[676] In the following subsections, we are discussing implementations of
meta-induction into the framework of probability aggregation. We will start
with an implementation which allows for proving general optimality for lin-
ear pooling. By this, e.g., the quadratic loss function proposed by Brier (1950)
is proven to be optimal. Then we will go on with proving a more restricted
optimality result for the much more complicated case of geometric pooling.
Although scoring functions satisfying constraint (PS) seem to be the most ad-
equate ones for probabilistic forecasts, the following considerations will hold
for all convex scoring functions and are not restricted to proper ones.

5.1 Optimal Arithmetic Probability Aggregation

In order to cash out the optimality result of meta-induction for probability ag-
gregation we have to change our framework. A probabilistic prediction game
contains the following ingredients:

14



* Asbefore, a series of events ey, e, . . . that are represented as the outcomes
of a random experiment or random variable E : N — Val, taking at each
time f a value E(t) in a finite value space Val = {vy,...,vx}, where this
time the possible values needed not to be graded but may also be discrete.
In what follows, the constants ¢; € Val denote always the actual true
outcome of a random experiment; i.e. E(t) = e;.

* At each time or round, the candidate methods provide a full probabil-
ity distribution over the possible outcomes of the next event in ques-
tion. Thus, the predictions pr;; of the methods M; for time t are now
probability distributions over the possible values of the event variable E,
representing the credences of the methods M,; for the possible outcomes
E(t) = vy (vy € Val). Or, more formally, pr;; = Pr;; : Val — [0, 1] where
Pr; ; satisfies the probability axioms.

e The predictions of the meta-inductive methods AMI (short for arith-
metically resp. linear weighted MI) and GMI (short for geometrically
weighted MI) are also represented by a probability distribution over Val.
They are denoted as Prgy;+ and , Prey; s, respectively, and defined as an
arithmetically / geometrically weighted average of the Pryy, ..., Pry;; de-
tails are presented below.

It is important to highlight that the candidate methods can be constant
methods, learning methods or any other kind of method whatsoever. Since the
methods may conditionalise their predictions to observations of past events,
the distribution Pr; ; may be understood as implicitly conditionalised to the ob-
served past events (and maybe to further method-specific information that we
leave implicit). So “Pr;;(E; = v)” is just a shorthand notation for “Pr;;(E; =
vle,...,e;—1)”. This implies formally that Pr;; runs over an algebra of propo-
sitions that contains p(Val)! (the t-fold Cartesian product of the powerset of
Val).

If we expand the meta-inductive framework of prediction games to the
probabilistic setting we face a problem concerning the definition of the loss
function: Now the predictions are real numbers, i.e. probabilities, but the
event values are non-numeric values vy,...,v;. The problem of expanding
meta-induction to the probabilistic setting was studied on another occasion
(cf. Feldbacher-Escamilla and Schurz 2020). [677] The problem is a two-fold
tension: On the one hand, if one tries to keep up with optimality in a too close-
knit way, then one easily ends up with probabilistic inconsistency. So, e.g., if
one expands the meta-inductive framework such that for each possible event
value a single prediction game is launched, then the meta-inductive prediction
for each event value will be optimal with respect to that event value. How-
ever, it will also be probabilistically incoherent, because the single predictions
of the parallel meta-inductive game will (most of the time) not sum up to 1
(cf. Feldbacher-Escamilla and Schurz 2020, pp.723-726). On the other hand,
if one tries to regain probabilistic consistency by, e.g., normalising the single
meta-inductive predictions for each possible event value, then this comes at
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the cost of being no longer universally optimal (cf. Feldbacher-Escamilla and
Schurz 2020, pp.726f). As we have also shown there, for the case of employing
the Brier score, there is a possible way to apply the meta-inductive framework
to the probabilistic setting: By defining an overall loss measure that averages
the individual losses for all possible event values, one obtains meta-inductive
weights that lead to a probabilistically coherent and at the same time optimal
probabilistic prediction (the reason is that averaging the outcomes of a convex
loss function results in a loss function that is itself convex; for details cf. the
proof in the appendix of Feldbacher-Escamilla and Schurz 2020).

Here we want to present another and even more general way of employing
the meta-inductive framework for probability aggregation that does not face
the dilemma of being either prone to inconsistency or suboptimality. The crucial
idea is to define a success measure for each method that is not relative to the
values of E’s value space. We do so by scoring a method for each time t by
scoring its predicted probability for that value which was the true value in that
round. We score the predicted probability Pr;;(e) of the true event outcome e;
by measuring its loss in regard to the truth value “1”, leading to the intended
effect that the loss of Pr;(e) is 0/1 iff e; was predicted with probability 1/0.
Let I(Pr;;) denote the loss of a probabilistic prediction of the event distribution
for time t, and s(Pr;;) := 1 — [(Pr;;) be the corresponding score. Then the loss
and the score are defined as follows:

I(Priy) = I(Pris(et),1) and s(Pri;) =1 —1(Prj(er), 1).

Recall that e; is that v, such that E(t) = vyy,.
In particular, if [ is the natural loss, this implies:

I(Pri;) =1 — Pris(e) and s(Pri;) = Pris(e;).

The same method of defining the success of a probabilistic forecaster is
applied in sequential probability assignment (Cesa-Bianchi and Lugosi 2006,
p-248), but restricted to the logarithmic loss function. Here, in the context of
strategies of probability aggregation, we introduce this method in a more gen-
eral way that applies to all convex loss functions. The schema of this approach
is depicted in figure 1.

We define the measure for the success rate based on the above loss and
scoring function by adding up the scores and dividing them through t. We
write this success rate of a candidate method M; as 4;; and the success rate of
arithmetic (probabilistic) meta-induction as 4, ;. [678]

Z S(Pri,u (eu)f 1)

1<u<t
it = ;
2 S(Prami,u (eu)r 1)
1<u<t
damit = ¢

We can now define success-based weights, and, what is crucial, this is done
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Figure 1: Example of a prediction game about single events using weights cal-
culated out of predictions of those values which turned out to be true. The bars
under ‘2 indicate the sum of the meta-inductive’s probabilistic forecasts that
add up to 1 in each round. Bars under ‘score’ represent the natural score in the
given round (time) and indicate that the score for a probabilistic prediction is
measured via its natural score in regard to the actual event in the given round
(time t). The bars under ‘regret’ indicate proven upper bounds for the average
per round regret. The probability forecast is optimal regarding the truth, as in-
dicated by the guaranteed vanishing regret. Hence, we have a probabilistically
coherent and optimal meta-inductive prediction method.

without reference to a specific value of the value space:

max(O, it — dami,t)

2 max(or Jj,t - Aami,t)
1<j<t

“)i,t =

with the same proviso as before, i.e., if = 0 or the denominator is zero, w; ; :=
1

" With the help of these weights we can define the meta-level probability
aggregation function that aggregates the object-level probability functions by
a success-based weighted arithmetic mean:

Pr{lp_.,n},tﬂ (Um> = Prami’tﬂ (Z)m) = Z Wi Pri,t+1 (Um) (VU c V{Ill) (AMIP)

1<i<n

[679] This probability aggregation function is an instance of the meta-inductive
method (AMI). For this reason, the long run optimality result regarding Pr,,; of
(AMI) can be simply transferred to the probability aggregation rule Pry; =
Prami:
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Theorem 1. Given that | is convex (where | is used for determining s as defined
above), then the forecaster Pr,y,; (as defined in (AMIF)) is long run access optimal:

lim max(s1,...,9nt) — damip < 0O,
t—rc0

with upper bounds for short run regrets: sy — sy < Vn/t (Vi€ {1,...,n}).

The same strategy can be straightforwardly applied for defining the exponen-
tial version of probabilistic meta-induction based on arithmetic probability ag-
gregation, resulting in improved upper bounds for short run regrets in accor-
dance with (EAMI); we omit the details.

That the aggregated meta-inductive predictions are also probabilistically
coherent follows from the well-known fact that the weighted average of indi-
vidual probability functions is, again, a probability function. In conclusion,
considering linear probability aggregation in a dynamical setting allows one to
measure the scores by observing past success rates, then meta-inductive prob-
ability aggregation, as presented here, provides an epistemic rationale for us-
ing such success-based weights: It is simply because in doing so, one has a
guarantee for approaching or even outperforming the best predictive probabil-
ities accessible in the setting. We should highlight that the characterisation of
weights as proposed above works only if the information base for aggregating
probabilities is strong enough to contain details about the past performance of
the different probabilistic methods in question. The results we presented here
hinge on the assumption that we know the full track record. However, the
meta-inductive account has been generalised also to prove optimality results
for cases with a restricted information base. So, e.g., there is the possibility
to conditionalise success rates on those probabilistic prediction instances for
which information about the individual performance is accessible. In these
cases, the aggregated prediction is optimal with respect to conditional success
(for details cf. the discussion of so-called “intermittent prediction games” in
Schurz 2019, chpt.7). If there is no performance data available at all, then our
account cannot be applied in order to specify the weights.

Up to now, we have achieved an epistemic rationale for choosing weights
used in linear probability aggregation in a success-based way. In the follow-
ing, we want to address the problem of providing an epistemic rationale for
choosing weights used in geometric probability aggregation.

5.2 Optimal Geometric Probability Aggregation

We have seen in the preceding subsection that there is a way of aggregating
probabilities by arithmetic success-based weighting (AMI”), which allows for
optimality. In this subsection, we want to expand this result also to geomet-
ric success-based weighted probability aggregation (GM) (see section 2). It is
clear that there is no direct implementation of the meta-inductive optimality
results of section 4 for geometrical probability aggregation, [680] because these
optimality results are formulated only for linear success-based weighted pre-
dictions. We have already succeeded in transforming the optimality results
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from a set of predictions about single events to the probabilistic case. Now
we want to show how this result can be used further to allow also for prov-
ing the optimality of a geometrical rule that uses success-based weights. As
a disclaimer, we should add that the result of this subsection is way more re-
stricted than the result of the previous subsection. Whereas in the case of linear
probability aggregation, we were able to show how the weights can be deter-
mined in a success-oriented way based on any convex loss function, in the
case of geometric probability aggregation, we are only able to show that such
a success-oriented way of determining the weights is possible for a specific set
of loss functions. Since the matter becomes quite quickly quite technical, we
present here the general scheme of our solution. The relevant technical details
are provided in the attached appendix.

First, let us state what such a geometrical meta-level rule has to look like.
In analogy to the instantiation of (AM) by the meta-level method (AMI?), we
aim at an instantiation of (GM) by the meta-level method GMI?:

1 .
Pry i1 (Om) = Promipy1(om) = — - T Prigra(om)® (Yo € Val)

to1<i<n
where gw; ; is the geometrical weight of method M; at time ¢ defined below,

co= Y. [ Prigsa(vp)oi,

1<j<k 1<i<n
1/c; is a (time-dependent) factor needed for normalisation,
and the Pr;s are e-regular, i.e. Pri(v,,) > € > 0;

a detailed justification of e-regularity is given in the appendix.
(GMIP)

Second, in order to transfer the optimality result from arithmetic probability
aggregation to geometric probability aggregation, we want to highlight that the
geometrical rule (GMI”) can be re-stated as a linear rule similar to (AMI”), by
replacing probabilities by their logarithms and aggregating these logarithmic
values:

10g(Promiss1(0m)) = Y. gw;;-10g(Prisiq(vm)) —log(ct)
1<i<n

Third, the main idea of our implementation is to transform the geometric pre-
diction game into an arithmetic prediction game whose task is to predict the
logarithms of the probabilistic forecasts of the geometric game. With the ex-
pression “geometric/arithmetic” game, we refer to a prediction game with geo-
metric/arithmetic aggregation rule. The weights of the arithmetic-logarithmic
prediction game in which we transform the geometric game will be success-
based and they will allow for applying the meta-inductive optimality result as
this was done for (AMI”). Finally, the result is transferred back via the equa-
tion above to the geometrical aggregation rule (GMI”) [681] by defining suit-
able “geometrical” weights (gw;) and success rates (go;) (time index omitted).
The schema of this approach is provided in figure 2.
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Figure 2: Schema of transferring the linear meta-inductive optimality result to
the geometric aggregation rule. The *—variables are the variables of a logarith-
mic prediction game which is a certain instance of (AMI?). For this instance,
the general meta-inductive optimality result holds, as was shown in section
5.1. One can equate this instance with (GMI”). Now, via reverse engineering
one can define success measures gs,,,;, g6; which allow for geometric meta-
inductive optimality in the probabilistic prediction game (*—free variables).

Given such a procedure, an optimality result can also be proved for geo-
metric probability aggregation as follows: In the spirit of geometric scoring,
we define the absolute success of a method as the logarithm of the product of
the scores achieved in each round. For this purpose we design the following
geometric success measure for the probabilistic predictions of the candidate
methods (cf. equation (6) in the technical appendix):

1 Pri, (e
Pip =7 log < I1 l'ue( u)> :

1<u<t

Here € > 0 is a small real number such that Pr;;(E(t) = v,) > 0 holds for all
i€ {l,...,n},t € Nand v, € Val. The latter requirement is called “epsilon-
regularity” and is needed for logarithmic prediction games; a detailed justifi-
cation is given in the appendix.

The normalised weights for the candidate methods are defined as usual
(with the standard proviso that if t=0 or the denominator is zero, gw; ; :== 1/n):

maX(O, gdi,t - gdgmi,t)

Z max(O, gdj,t - gﬂgmi,t)
1<j<n

g9ir =

The success rate gmis, of the geometric meta-inductive method Prg,,; (GMI7) is
defined in the same way as the candidate method’s success rate (above), with
one difference: there is the additional factor ¢; that reverses the normalisation
factor 1/¢; in the definition of the geometric average (cf. equation (7) of the
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appendix):

. Pro. .
gmis, = % log 1—[ <Ct rgmz,u(eu)) .

1<u<t €
where c; is the normalisation term according to (GM) in section 2:

c= Y, [T Priu(oj)on.

1<j<k1<i<n

[682] That the success measure for the candidate methods must differ from that
of the geometric meta-inductivist results from the fact that geometric averag-
ing of probabilities requires the additional step of re-normalising the resulting
probability function; this step is not needed in arithmetic averaging. Now,
given this success measures it holds (the proof is given in the appendix):

Theorem 2. Prgy; as defined in (GMIV) is long run access optimal, given the success
rate go; (as defined in (6) in the appendix) for the candidate methods and gmis (as
defined in (7) in the appendix) for the geometric meta-inductive method,

lim max(gay4,...,98,) — gmis; < 0

t—o0

with the following short run bounds for the regrets: Vi € {1,...,n}:

1 .
i —gmisy < —-Vn/t (Vi€ {l,... n}).

A similar result is possible for the exponential version of (GMI”); again, for
a lack of space, we omit the details here. The result shows that also geomet-
ric probability aggregation can be performed in a success-based way such that
the long run access optimality as well as tight short run bounds of such aggre-
gation can be guaranteed. This provides an epistemic rationale for geometric
aggregation. Furthermore, as was the case for linear probability aggregation,
also here the outcome is probabilistically coherent due to the normalisation of
weights (gw;) and the fact that the geometrically weighted average of individ-
ual probability functions results in a probability function again. Note, how-
ever, that due to the restrictions of geometrical pooling this result is much less
general. Whereas for linear pooling with success-based weights we proved an
optimality result that holds for the full range of convex loss functions, for geo-
metrical pooling we were only able to show to prove optimality for a particular
geometric loss and scoring function.

6 Conclusion

In this paper we have argued for a new solution to the problem of weighted
probability aggregation. We have seen that some general constraints determine
families of aggregation rules. However, even if arguments can be put forward
for deciding in favor of a particular family, in the classical approach the choice

21



of an exact aggregation rule of the respective family remains epistemically un-
determined. We have argued that a success-based calculation of weights—as
is done in the framework of meta-induction—allows for a much more precise
choice. Success-based weighting also provides a rationale for such a choice,
since it guarantees long run optimality in probabilistic prediction tasks. As
we have tried to make clear in this investigation, if we have a broad enough
information basis that allows us to track the predictive success of the set of
probability functions in question, we can employ this information to further
determine the weights. Whereas the exact choice of the weights for linear and
geometric probability aggregation might still depend on the context and pur-
poses in question [683] (e.g. depending on which loss function is used in or-
der to measure success), such choices can be epistemically justified as long as
the respective conditions of the optimality results are given. For the case of
linear probability aggregation, we could justify a broad field of applications,
namely all those cases where the success of a probabilistic forecast is measured
via a convex loss function. For the case of geometric probability aggregation,
our result is more restricted but proves at least the possibility of an optimal
success-oriented determination of weights.

Appendix: Optimality of Geometric Aggregation

Here we provide details for our approach to geometric meta-inductive proba-
bility aggregation. Recall the schema 2 of section 5.2. We go through it accord-
ing to the following steps: We first define geometric pooling (D, then device a
game with predictions of logarithms of probabilities with an arithmetic meta-
inductivist @), define the respective success measures of this game ), trans-
form this game into a prediction game about probabilities with a geometric
meta-inductivist @, define—via backwards engineering—the respective suc-
cess measures of this game (§), show that this is the success measure for geo-
metric pooling and thus verify the optimality of the geometric meta-inductivist
with respect to these success measures ©).

@ D
prai Pri = Prgml-, Pr;

1) ©®
©) dZmi' J:'F Pgmir i ©)
U f
Ywi-pri = IIPr#%

1 1
©)

@: We aim at the optimality of Prgy,; as defined in (GMI?).

[684] We start with the geometric prediction game with predicted proba-
bilities pri; = Priy(Et = vp) (v € Val). We transform this game into an
ordinary arithmetic prediction game by designing an ordinary game whose
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task is to predict the logarithm of the predicted probabilities of the geometric
game. There are three problems to be solved before we can start.

First, if the predicted probability is zero, its logarithm is negatively infinite,
which is intractable. So we have to assume that the predicted probabilities
are lower bounded by some arbitrarily small but positive value € > 0, i.e.
Pri+(E(t) =vy) > eholds foralli € {1,...,n}, t € Nand v,, € Val. The latter
condition is called e-requiarity. It is stronger than ordinary regularity because
there are infinitely many points in time. Moreover, (e-)regularity implies the
condition of coherence from section 2. Note that the condition of e-regularity
would be too strong as a general condition for probabilities that are implicitly
conditionalised to evidence, because if the evidence e entails the negation of a
hypothesis h then, obviously, Pr(hle) = 0. However, we require this condition
only for the predicted probabilities of the next event, which are implicitly con-
ditionalised at most on past events, but not on present events. For these prob-
abilities, the predicted event is analytically independent of (implicitly) condi-
tioning events and therefore the condition of e-regularity is reasonable.

Second, the logarithms of probabilities are zero or negative, but we want
positive event values and predictions. A simple solution to this problem is
suggested by the solution of our first problem: we just have to predict the
logarithms of these probabilities viewed as multiples of €, i.e. the probabilities
divided by €; the logarithms of them will always be positive and range between
Oand 1/e.

Third, the so-defined predictions log (W

< ) of our transformed
arithmetic game do not range in the interval [0,1] but in the interval
[0,l0g(1/€)]. But this does not matter because we assume that the loss and
scoring function of our transformed game is the natural one. For natural loss
functions the optimality results for meta-induction can be transformed easily
to any scoring interval of the form [0, b] (with scoring s(p,e) = b — |p —e|,
“p” for “prediction”). The long run optimality result stated in section 4 ap-
plies directly, and the short-run bounds for (AMI) and (EAMI) hold if they are
multiplied with the breath b of the scoring interval (cf. Schurz 2019, p.88).

We designate the parameters of the corresponding arithmetic-logarithmic
prediction game by putting an asterix * over the predictions and scores of this
game. So, for all candidate methods M;, ..., M, in the latter game, values

U € Val and times ¢ it holds:

prii(vm) = log (W) = log(Pri(vm)) + log (i) 1)

Note that the predictions pr;, of the logarithmic game are no longer probabili-
ties.

@: Since the maximal score of a logarithmic prediction is log(1/¢€), the loss of
a [685] logarithmic prediction pr}, = log(Pr; (et)/€) is given as

* * 0\ o . — € - _ .
I*(pri;) = log(1/€) —log(Pr;;(et)/€) = log (e : Pri,t(et)> log(Pr;(er)).
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So the corresponding score is given as

s*(priy) = log(1/€) — I(priy) = log(1/€) +1og(Pris(er)) = log(Pris(er)/€).

The success rate of the candidate methods is denoted as 47, and thus given as

follows:
- Y log (Prw(e“)) @

1<u<t

The same definition applies to the success rate of the meta-inductivist of the
arithmetic-logarithmic game, denoted as 4}, ,. Applying probabilistic meta-
induction to the candidate methods of the logarithmic prediction game yields,
according to (AMI”):

pr:;mi,t—i-l(vm): Z Wi*,t' P”Zt+1(er) 3)
—_———

1<i<n
_1Og<P"z t+1<vm>>
(1)

As before, the weights w}, are success-based (4,) as follows:

* *
o — max (0, 5 _%mit) @
Lt Yy max(0, s — i)
1<]<n

Since (3) is an instantiation of (AMI”) and we assumed a convex loss function,
it follows from our investigation in section 5.1 that Pr} . is long run access
optimal. So we have defined the relevant success measures 47, 4 . for the log-
arithmic game @v'.

We now transform the logarithmic predictions and scores of the arithmetic
game into ordinary probabilistic predictions of a geometric game with suitably
defined scores. Retransforming pr; to Pr; is possible by exponentiation, i.e. by

defining Pr;;(vy) = oPrir(om) (which is the inverse function of log, assuming
that log is the natural logarithm). Similarly for the meta-inductive aggregation
method:

)
Pryipy1(vm) = ePTamip1(0m)

—
=

. ()
xp Z Wi Prigs(Om) = H Pripiq(om) "t

1<i<n —_—— 1<i<n
(T)log(Pri,m(vm))

[686] Now, (5) resembles already (GMI7), so @v . Only two things are different:
First, the weights w, are still based on the scores of the arithmetic-logarithmic
game, and, second, the normalisation factor 1/c of the geometric aggregation
rule (cf. (GMI”) is missing.
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We now define a corresponding scoring and success measure for the ge-
ometric game which allows us to achieve long run optimality together with
short run bounds for the normalised geometric aggregation Prg,,; accomplished
by (GMI”) based on the individual probabilities Prq,..., Pr,. This is done as
follows.

* The score (s) of the probabilistic predictions Pr;; is defined as: s(Pr;;) =
Pr;1(et) /€ where this score is obtained by subtracting the corresponding
loss I(Pri;) = (1/€) — (Pris(et)/€) from the maximal score (1/€).

* In the spirit of geometric aggregation, we define the absolute geomet-
ric success of a series of predictions as the logarithm of the product of
their scores, i.e. as (log[Tj<,<;s(Pri,)). Alternatively, we could use a
logarithmic loss function already for the one-round scores and define
log(Pr;(et)/€) as the score of one round. In this case, the absolute suc-
cess after t rounds would be given as the sum of these logarithmic scores.
Both methods are equivalent. This is the reason why one finds both labels
in the literature quite often used interchangeably: geometric pooling (due
to the product) and logarithmic pooling.

The geometric success per round, abbreviated as g4, ;, is obtained from the
absolute geometric success by dividing through ¢:

log< T s<Pri,u>> 1og< 11 ””)
1<u<t 1<u<t

Pir = ; = ; (6)

* But the result of (2) is identical with that of (6) and therefore we get:
f’i*,t = i

i.e., the average per round success of the logarithmic arithmetic game
agrees with the average per round success of the geometric game. This
promises that the optimality result is transferable from the logarithmic
arithmetic to the geometric game, provided we apply the same trans-
formation to the score of the meta-inductive method. However, this is
not enough for the geometric meta-inductive method, since this method
involves the additional (time-dependent) normalisation constant ¢;. For
this reason, we have to define a scoring function gs and a success mea-
sure gd;; for geometric meta-inductive probability aggregation which
“de-normalises”, i.e., gets rid of this constant, by implementing the nor-
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malisation factor ¢; into the score [687]:

Pr,.i:(e
gS(Prgmi,t) =Ct- M

€
wherec; = Y ] Prig(vj)oit
1<j<k1<i<n
and Prgy; ; is defined as in (GMI”) in section 5,
with the geometric weights gw; ; defined as usual
max(O, gdi,t - g‘ogmi,t)
IWit =

, Z max (0, P — d;rni,t) ’
1<j<n

Again, the standard proviso gw;; = 1/n is assumed for t=0 or if the de-
nominator should be zero.

* Based on this “de-normalising” score we can define the de-normalised ge-
ometric success rate of Prqmi as:

1<u<t

1-log IT (Prgmi'u(eu)'6> )
t 1<u<t €

So, we calculated the relevant success measures gs;, gmis for the geometric
game, hence Q)v'.

, 1
gms; = n 'log ( H gS(Prgmi,u)> =

* We have already shown that the relative geometric success of a candidate
method equals the relative success rate of this method in the logarithmic
arithmetic game: 57, = g4;,. We also know that the meta-inductive pre-
dictions in the logarithmic arithmetic game, pr}, . with success rate s> .,

is long run access optimal and has short run bounds given by multiplying

the short run bounds of (AMI) and (EAMI) of section 4 with the breath
1/€ of the scoring interval of the logarithmic scores (see the theorem be-

low).

* We show now that the geometrically aggregated meta-inductive predic-
tions of the geometric game, Pr,,,; with success rates gmis,, are likewise
long run access optimal and satisfy the same short run bounds, by show-
ing that for all times t > 0, s ., = gmis, holds:

ami,t

- By (7) the geometric success rate of the meta-inductive method is:

1
gﬂll:dt — ? . log H (C : Prgmi,u(e“)/€>

1<u<t
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- [688] According to (GMI”):

(Pri,u (eu )gowi’" )

Prgmi,u (eu) = c

1<u<n

so, the normalisation factor ¢ cancels and we get:

n

[T (Priu(en)?in)

i=1

1
g’"‘bt:¥‘10g I[1

1<u<t €

— Reformulation gives us:

gmisy =+ ¥ ( > (gwlg<l’”>)>

1<u<t \1<u<n

— which is identical with

1
?' Z S(prZu) = OZmi,t

1<u<t

since we identify the starred weights w}, with the weights of the geomet-

ric meta-inductivist gw; ,,. It follows that gmis;, = dpi b

This completes the proof of theorem 2 at the end of section 5. ®v.

We conjecture that this result can be generalised to other loss and scoring
functions and that one could get rid of the “de-normalisation” in the success
rate of Prg,;. However, this is a very complex topic and work for future re-
search.
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